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Controllability of cross-flow two-phase heat exchangers
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Abstract

The analysis of controllability of a heat exchanger operating under two-phase conditions is performed. An evaporator operating in a
vapor compression system is chosen for the analysis. A moving-boundary model is used to simulate the dynamic behavior of the evap-
orator. First, the controllability of the linearized model is verified. Then, it is shown that the nonlinear model can be classified as a con-
trol-affine system with drift. Short-term local controllability of the nonlinear model is shown using Lie algebras. A linear quadratic (LQ)
controller is developed for the linearized system and numerical simulations are provided that show a strong coupling between the vari-
ables of the model.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat exchangers operating under two-phase flow condi-
tions are commonly used in a wide range of industries,
including, among others, power generation, food process-
ing, chemical plants, refrigeration, desalination, and
transportation. A familiar example of the utilization of
two-phase flow heat exchangers is a vapor compression
cycle. These cycles are commonly used for air conditioning
and refrigeration purposes. They are composed of a con-
denser, compressor, expansion device, and evaporator.
Transcritical-cycle vapor compression systems use a gas
cooler instead of a condenser and they have one extra heat
exchanger called suction line heat exchanger that is used to
improve the efficiency of the cycle. Fig. 1 shows a schematic
of both systems. These systems are usually designed to
meet certain performance and cost specifications under
steady-state conditions. Once the components of the sys-
tem have been assembled together, a control logic is devel-
oped to take the system to different operating conditions
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and also to reject external disturbances. In general, the
control logic is obtained considering the dynamic response
of the assembled system subject to external stimuli. Before
developing and tuning the control logic for the assembled
system, it is clearly desirable to know if the individual com-
ponents can be controlled, i.e. if we can take any of the com-
ponents from any single state to any given state during a
prescribed time interval. This can be done by analyzing
the controllability of a component. Since the compressor
and the expansion device have much faster reactions than
the heat exchangers [1], they can be modeled using algebraic
equations. Controllability of single-phase cross-flow heat
exchangers has been analyzed in the past [2], this paper
addresses the controllability of cross-flow heat exchangers
operating under two-phase flow conditions. Since the
high-pressure side of the vapor compression cycle can have
a condenser or a gas cooler, for which there is no two-phase
flow, we will consider only the evaporator in our analysis
since this component always operates in two-phase.

Air conditioning systems are used to remove latent and
sensible heat from an air-stream. The system has to be
operated so that the external surface of the evaporator is
prevented from freezing. The operating conditions of the
air conditioning system can be manipulated by different
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Nomenclature

A area
A matrix operator in linearized systembA matrix operator in enhanced system
B matrix operator for manipulated variable in lin-

earized systembB matrix operator of manipulated variable in en-
hanced system

Cp specific heat
D diameter
F function of x and ubG matrix operator of reference variable in en-

hanced system
P pressure
Qc controllability matrix
S solution of Riccati equation
T temperature
W matrix of vector fields
Z non-singular matrix
f drift vector
g smooth vector field

h enthalpy
l length of two or single phase
_m mass flow rate
n number of states

Greek symbols

a heat transfer coefficient
�c mean void fraction
q density

Subscripts and superscripts

1 two-phase section
2 single-phase section
a ambient
g vapor
i inlet
int interface
o outlet
r refrigerant
w wall
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mechanisms. Some air conditioning systems have a capil-
lary tube to create the pressure drop between the high
and low pressure side. There is no possibility to manipulate
this device, so the compressor is run at constant speed and
turned on and off to maintain a certain desired tempera-
ture. Other systems have a thermal expansion valve that
can be opened or closed to vary the amount of superheat
at the outlet of the evaporator. Transcritical systems use
an electronic expansion valve. Also, some systems allow
the fan speed near the evaporator to be varied manually
or automatically. Since the compressor speed is either fixed,
as in residential systems, or it follows the RPMs of the
engine, as in automotive systems, it is not considered a
manipulated variable. The thermal expansion valve is used
to control the amount of superheat at the exit of the evap-
orator, and the change in the air flow rate varies the heat
transfer rate across the evaporator.
Fig. 1. Typical vapor compression systems: (a) standard and (b)
transcritical.
To evaluate the controllability of the evaporator,
dynamic models that simulate the behavior of this heat
exchanger have been derived. The development of dynamic
models for heat exchangers operating in two-phase has
focused in three main approaches: lumped-parameter
(moving-boundary) [3,5], spatially distributed [6], and sys-
tem identification techniques [7]. Since the moving-bound-
ary approach is well suited for control-oriented modeling
of vapor compression systems [8], in this paper we use this
approach to analyze the controllability of a heat exchanger
operating under two-phase conditions.

Controllability of linear systems is a well known subject
with a large number of references available in the literature
[9–11]. Controllability of nonlinear systems has also been
studied extensively but there are still some open questions
about sufficient conditions for deciding when a nonlinear
system is locally or globally controllable [12]. Some of
the references from the literature address issues related to
controllability of nonlinear time-invariant continuous-time
systems of the form _x ¼ f ðx; uÞ [14,13]. A significant num-
ber of references concentrate in controllability of control-
affine systems with [15,17–19] or without [16,20] drift.
Nonlinear infinite dimensional systems have also been
analyzed in [21]. The purpose of this paper is to apply
the concepts of nonlinear controllability to the nonlinear
model of a heat exchanger operating in two-phase flow.
2. Moving-boundary approach

As mentioned in the previous section, we will analyze
the controllability of an evaporator simulated with a
lumped-parameter moving-boundary model. This formula-
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tion is obtained by dividing the length of the heat exchan-
ger into a two-phase and a single-phase section as shown in
Fig. 2. The model does not include condensation on the
external surface of the heat exchanger and it follows the
derivation found in [3]. The model is based in the work
by Wedekind [4] who showed experimentally that the mean
void fraction (the volumetric ratio of vapor to liquid)
remains relatively invariant in the two-phase region of a
heat exchanger under different operating conditions. Some
of the assumptions utilized in the derivation of the model
include the heat exchanger simulated as a long and thin
horizontal tube, the refrigerant flowing through the heat
exchanger is modeled as a one-dimensional flow, and the
axial heat conduction is negligible.

The following are the governing equations for each sec-
tion of the heat exchanger:

Node 1 Energy balance

Al1

dðqlhlÞ
dt

ð1� �cÞ þ
dðqghgÞ

dt
�c� dP

dt

� �
þ Að1� �cÞðqlhl � qghgÞ

dl1

dt
¼ _mihi � _minthint þ ai1pDil1ðT w1 � T r1Þ ð1Þ

Mass balance

Al1

dql

dP
dP
dt
þ Aðqlð1� �cÞ þ qg�c� qgÞ

dl1

dt
¼ _mi � _mint ð2Þ

Energy equation at tube wall

ðCpqAÞw
dT w1

dt
¼ ai1pDiðT r1 � T w1Þ þ aoDoðT a � T w1Þ ð3Þ

Node 2 Energy balance

Al2 q2

dh2

dt
� dP

dt

� �
¼ ai2pDil2ðT w2 � T r2Þ

� _mint � qgA
dl1

dt

� �
ho � hint

2

� _mo

ho � hint

2
ð4Þ

Mass balance

Al2

dq2

dt
þ Aðqg � q2Þ

dl1

dt
¼ _mint � _mo ð5Þ
Fig. 2. Schematic of evaporator model.
Energy equation at tube wall

ðCpqAÞw
dT w2

dt
þ T w1 � T w2

L2

dl1

dt

� �
¼ ai2pDiðT r2 � T w2Þ þ aopDoðT a � T w2Þ ð6Þ

These equations can be combined to obtain the nonlinear
system.

_x ¼ Zðx; uÞ�1
Fðx; uÞ ð7Þ

where x ¼ ½ l1 P ho T w1 T w2 � are the state variables
and u ¼ ½ _mi hi _mo ao � are the manipulated variables
and where l1 is the length of the two-phase region, P is
the pressure at the evaporator, ho is the outlet enthalpy,
and Tw1 and Tw2 are the wall temperatures at the two-
phase and single-phase section, respectively. _mi is the inlet
mass flow rate, hi is the inlet enthalpy, _mo is the outlet mass
flow rate, and ao is the external heat transfer coefficient.
The matrix Z is non-singular as long as we are operating
at conditions for which l1 and l2 are different than zero.
The coefficients of Z(x,u) are given in [22].

2.1. Linearized equations

A linearization of this system about an operating point
x0 is performed. The linearized equations take the form

D _x ¼ ADxþ BDu ð8Þ

where

A ¼ ½Zðx; uÞjx0;u0
��1

"
oF

ox
j
x0;u0

#
;

B ¼ ½Zðx; uÞjx0;u0
��1

"
oF

ou
j
x0;u0

#

It has been shown [9] that using the controllability
matrix, Qc, the linearized system given by Eq. (8) is con-
trollable if and only if rank(Qc) = n where

Qc ¼ ½B AB A2B :: An�1B � ð9Þ

and n is the number of states, in this case is equal to five. By
inserting matrices A and B in Eq. (9), the system described
by Eq. (8) is found to be locally controllable. However, for
normal operating conditions, as described in section 6, the
condition number of the controllability matrix, i.e. the ra-
tio of the largest to smallest singular values, is 8.442 � 109

which shows that large values of the control input are re-
quired to control this heat exchanger [2].

3. Extreme cases

It is important to understand how the model presented
in Section 2 behaves under different operating conditions,
especially at extreme cases. Considering Eqs. (1)–(6) under
steady-state operating conditions, we reduce the system of
algebraic equations to
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_miðhi � hoÞ ¼ aoDop½ðT w2 � T aÞl2 þ ðT w1 � T aÞl1� ð10Þ
where Do is the external tube diameter and Ta is the ambi-
ent temperature. By noting that L = l1 + l2 is the total
length of the heat exchanger, we can obtain the following
expression for the length of the two-phase region (l1):

l1 ¼
_miðhi � hoÞ þ aoDopðT a � T w2ÞL

aoDopðT w1 � T w2Þ
ð11Þ

For the system to be locally controllable l1 needs to be
greater than zero and it also has to be smaller than the
length of the heat exchanger (L).

If we consider the case in which the mass flow rate _mi

goes to zero, we obtain

0 <
T a � T w2

T w1 � T w2

< 1 ð12Þ

For an evaporator operating in steady state, this condition
would imply that the wall temperature of the two-phase re-
gion, Tw1, should be larger than the wall temperature of the
single-phase section, Tw2, which is not possible. On the
other hand, if we consider the condition for which the
external heat transfer coefficient (ao) goes to zero (i.e. insu-
lated tube walls), the difference between the inlet and outlet
enthalpies (hi � ho) would need to go to zero to obtain a fi-
nite value. Thus, under this extreme condition, the evapo-
rator is not transferring heat. Therefore the model is not
suitable for extreme operating conditions. Utilizing Eq.
(11) we obtain that the model works for the ratio between
mass flow rate and external heat transfer coefficient given
by

KðT a � T w1Þ >
_mi

ao

> KðT a � T w2Þ ð13Þ

where K = DopL/(ho � hi).

4. Nonlinear controllability

So far, we have shown controllability of the linearized
equations around an operating point. We have also ana-
lyzed the nonlinear equations under steady-state operating
conditions subject to extreme cases of refrigerant mass flow
rate and external heat transfer coefficient. Ultimately, we
would like to be able to have some notion of the controlla-
bility of the original nonlinear equations without having to
restrict ourselves to linearized models or particular cases of
the nonlinear model. In this section of the paper we apply
concepts of Lie algebras to analyze the local controllability
of the nonlinear equations.

4.1. Lie algebras

Many physical systems can be simulated and analyzed
with models of the form,

R : _x ¼ fðxÞ þ g1ðxÞu1 þ � � � þ gmðxÞum ð14Þ
where M is a smooth manifold, and x 2M; f,g1, . . . ,gm are
smooth vector fields on M. The control variable ui repre-
sents the external inputs and x represent the state vari-
ables. When f = 0 these systems are called control-affine
without drift because when u is zero the state does not drift,
but, instead remains constant [14]. When f 6¼ 0 then the sys-
tem is called control-affine with drift. The set of all
(smooth) vector fields on a given M � Rn is denoted by
V(M).

Definition 4.1. The Lie bracket of f, g 2 V(M) is
½f; g� ¼ og

ox
f � of

ox
g.

Definition 4.2. A Lie algebra (of vectors fields on M) is a
linear subspace S � V(M) that is closed under the Lie
bracket operation, that is, [f,g] 2S whenever f and g are
in S.

Let C denote the smallest subalgebra of V(M) that con-
tains f,g1, . . . ,gm. If dimðCÞ ¼ dimðMÞ at a point x0, then
the system described by Eq. (14) satisfies the Lie Algebra
Rank Condition (‘‘LARC”) at x0 [17].

Definition 4.3. A system is small-time locally controllable
(‘‘STLC”, or simply ‘‘controllable”) if the set of states that
are reachable in time T contains a neighborhood of x0 for
all T > 0.

Theorem 4.4. If the system described by Eq. (14) is such that

f � 0 and satisfies the LARC at a point x0 then it is STLC

from x0.

For systems for which f 6¼ 0 the analysis of controllabil-
ity requires a stronger result [17,23]. We define the concepts
of ‘‘good” and ‘‘bad” brackets [15]. For a bracket term B,
we define di(B) as the number of times the indeterminate Xi

appears in B, and the degree of B is
Pn

i¼0diðBÞ. B is called a
‘‘bad” bracket if d0(B) is odd and di(B) is even for all
i 2 1, . . . ,n, and B is a ‘‘good” bracket otherwise. A ‘‘bad”

bracket B is ‘‘neutralized” at a state x0 if B, evaluated at x0,
is the linear combination of ‘‘good” brackets of lower
degree evaluated at x0.

Therefore, and as stated in [17]

f is bad

½g1; g2� is good

½f; ½g1; g2�� is bad

½g1; ½g1; g2�� is good
Theorem 4.5. If a system R satisfies LARC and all bad
brackets are spanned by lower degree good brackets, then R
is STLC.
4.2. Analysis of nonlinear model

The nonlinear model described by Eq. (7) can be rear-
ranged and written in terms of vector fields to form a con-
trol-affine model with drift of the form _x ¼ f þ g1u1þ
g2u2 þ g3u3 þ g4u4
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_l1

_P
_ho

_T w1

_T w2

0BBBBBB@

1CCCCCCA¼
z11j1� z12j2

z21j1� z22j2

z31j1� z32j2

z44ai1pDiðT r1� T w1Þz51j1� z52j2

0BBB@
1CCCA

þ

z13� z11hg

z23� z21hg

z33� z31hg

0

z53� z51hg

0BBBBBB@

1CCCCCCA _miþ

z11hg

z21hg

z31hg

0

z51hg

0BBBBBB@

1CCCCCCA/i

þ

z12ðhg� hoÞ� z13

z22ðhg� hoÞ� z23

z32ðhg� hoÞ� z33

0

z52ðhg� hoÞ� z53

0BBBBBB@

1CCCCCCA _moþ

0

0

0

z44pDoðT a� T w1Þ
z55pDoðT a� T w2Þ

0BBBBBB@

1CCCCCCAao

ð15Þ

where j1 = ai1pDil1(Tw1 � Tr1), j2 = ai2pDi(L � l1)(Tw2 �
Tr2), /i = mihi, and the coefficients zij are obtained from
matrix Z�1 in Eq. (7). Since a model must be linear with
respect to the manipulated variables to be classified as con-
trol-affine, we have chosen /i instead of hi as one of the
manipulated variables. The manipulated variables _mi and
/i are still independent from each other since hi provides
an additional degree of freedom.

To test for the controllability rank condition we use
(g1,g2,g3,g4,g5).

In this case g5 ¼ ½g3; g4� ¼ 0; 0; 0; 0; g54
g33

T w2

� �0
where 0

denotes the transpose and g33 and g54 are obtained from
the matrix of vector fields that is formed from the last four
column vectors in Eq. (15) plus g5

Wðx0Þ ¼ ðg1; g2; g3; g4; g5Þ ¼

g11 g12 g13 0 0

g21 g22 g23 0 0

g31 g32 g33 0 0

0 0 0 g44 0

g51 g52 g53 g54 g55

0BBBBBB@

1CCCCCCA
ð16Þ

The determinant of matrix W(x0) is

detðWðx0ÞÞ ¼ ½g22ðg11g33 � g31g13Þ þ g32ðg21g13 � g11g23Þ
þ g12ðg31g23 � g21g33Þ�g44g55 ð17Þ

This determinant is in general different than zero, so the
controllability matrix has a generic rank of five and the sys-
tem satisfies the LARC condition. However, there may ex-
ist points x0 for which W(x0) is singular. This possibility
must be checked for particular x0 [16]. We consider now
some of the brackets.

½g1; g2� ¼ ð�; �; �; 0; �Þ
0
; ½g3; g4� ¼ ð0; 0; 0; 0; �Þ

0

½f; g1� ¼ ð�; �; �; 0; �Þ
0; ½f; g4� ¼ ð�; �; �; �; �Þ

0

½g1; ½f; g1�� ¼ ð�; �; �; 0; �Þ
0
; ½g4; ½f; g4�� ¼ ð0; 0; 0; 0; �Þ

0

where � denotes a number different than zero. The ‘‘bad”

brackets are spanned by lower order ‘‘good” brackets.
Thus, by means of Theorem 4.5, we have that the system
described by Eq. (7) is STLC at x0, unless W(x0) becomes
singular at that operating point.
5. LQ optimal control

The control of the evaporator can be done using differ-
ent techniques. Steering control can be applied directly to
the control-affine with drift model [26,27]. However, this
type of control is not commonly used in industry for resi-
dential or mobile air conditioning systems. In this section
we apply a more standard approach and we develop a con-
troller for the linearized equations.

Consider a linear system of the form.

_x ¼ Axþ Bu

y ¼ Cx
ð18Þ

We define the augmented system as

bA ¼ A 0

�C 0

� �
; bB ¼ B

0

� �
; bG ¼ 0

I

� �
ð19Þ

to form the system

_x

_w

� �
¼ bA x

w

� �
þ bBuþ bGr ð20Þ

where r is the reference command and _w ¼ r � Cx. We de-
fine the error

e ¼
r � Cx

w

� �
¼ Mr þ Hx ð21Þ

where

M ¼
I

0

� �
; H ¼

�C 0

0 I

� �
ð22Þ

We find the linear optimal tracker that minimizes the
function

J ¼ 1

2

Z 1

0

ðe0Qeþ u0RuÞdt ð23Þ

where Q P 0 and R > 0. Following the procedure stated in
[24,25] we obtain

K ¼ R�1bB0S ð24Þ
where S is the solution to the Riccati equation

SbA þ bA0S þ SbBR�1bB0S þ Q ¼ 0 ð25Þ
The control law becomes u ¼ �Kx̂ and the closed loop sys-
tem is as follows:

_̂x ¼
A� BKx �BKw

�C 0

� �
x̂þ

0

I

� �
r ð26Þ

where K = [Kx Kw].
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6. Numerical simulations

6.1. Open loop control

We now compare the behavior of the nonlinear and lin-
earized models subject to open loop control. Carbon diox-
ide is used as refrigerant and we linearize the equations
with respect to an arbitrary fixed operating point for which
the length of the two-phase section is l1 = 75% and it is
based on the total length of the coil, the evaporating pres-
sure is P = 3455 kPa, the enthalpy at the outlet of the coil is
ho = 447 kJ/kg, the wall temperature at the two-phase
region is Tw1 = 0.07 �C, and at the single-phase region is
Tw2 = 9.58 �C. There are four manipulated variables that
can be varied, i.e. the inlet mass flow rate _mi, the inlet
enthalpy hi, the outlet mass flow rate _mo, and the external
heat transfer coefficient ao. Many air conditioning systems
allow a manual selection of the air flow rate across the
evaporator. We will consider this case for our analysis.
An arbitrary 50% change in the external heat transfer coef-
ficient is applied to the nonlinear and linearized equations
at t = 200 s. The values of the other three manipulated
variables are kept constant. Fig. 3 shows the comparison
between the responses of the two models. The linearized
system simulates the dynamics of the nonlinear system
accurately. The main differences are due to the evaluation
of the fluid properties at different temperatures in the non-
linear model. For the linearized model, matrices A and B in
Eq. (8) are evaluated at a fixed operating point. It is noticed
that at these operating conditions, the singular values of
matrix A show multiple time scales as reported by other
researchers [3,8].
Fig. 3. Open loop response. Solid line – linearized
6.2. LQ control: Step change in P using linear model

The open loop control analysis verified that the linear
model represents the dynamics of the nonlinear model
accurately. We now use the derivations from the previous
section to obtain a LQ controller for the linear model.
Due to the large difference in magnitude of the variables
involved, the values of matrices R and Q need to be scaled.
Similar operating conditions as in the open loop control
case are used but in this case we vary the reference evapo-
rating pressure from P1 = 3520 kPa to P2 = 3700 kPa.
Fig. 4 shows the behavior of the controlled variables. In
spite of the strong coupling between the state variables,
the controller is able to keep the controlled variables at
the desired values. Due to the increase in the evaporator
pressure, the temperature of the refrigerant is increased
from 0.376 �C to 2.27 �C. Since there is only a small differ-
ence between the reference temperature for the wall in the
two-phase region, Tw1, and the saturated temperature of
the refrigerant at the operating pressure, the controller
requires a long time to drive the wall temperature of the
two-phase region back to the reference value. As it is
expected for an evaporator, the reference of the wall tem-
perature has to remain at a value larger than the saturation
temperature of the refrigerant at the evaporating pressure.

6.3. LQ control: Step change in ho using linear model

A step change in the reference for the evaporating pres-
sure modifies the saturating temperature and therefore
affects the wall temperature and the length of the two-phase
section. Other reference parameters have a smaller impact
equations. Dashed line – nonlinear equations.



Fig. 4. Step change in evaporator operating pressure. Solid line – controlled variables, Dashed line – reference.
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on other variables when modified. For instance, a step
change in the reference for the outlet enthalpy has a small
impact on the other controlled variables. Fig. 5 shows the
behavior of the linearized model subject to LQ control
for a change in the reference for the outlet enthalpy. The
reference is tracked accurately and no significant distur-
bance is observed in the other controlled variables.
Fig. 5. Step change in outlet enthalpy. Solid line –
6.4. LQ control: Step change in l1 using nonlinear model

In the previous sections it is shown that the LQ control-
ler works well with the linearized model. We now test the
LQ controller with the nonlinear model by performing a
step change in the length of the two-phase region. We start
from the same initial conditions used to generate Figs. 4
controlled variables, Dashed line – reference.



Fig. 6. Step change in outlet length of two-phase section using nonlinear model.
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and 5, so that l1 starts with a value of 75% of the total
length of the heat exchanger. At time equal to 11,000 [s]
we change the reference to 50% keeping the other four ref-
erence values constant. The results are shown in Fig. 6. The
controller drives the system to the new reference value but
oscillations occur in the length of the two-phase region.
This shows the differences between the linearized and non-
linear models. Also, due to the large difference in the mag-
nitude of the variables involved (i.e. l1, P, ho, Tw1, and Tw2)
and the arbitrary values chosen for matrices Q and R in Eq.
(23), the controller has better performance tracking the ref-
erence values of P and ho compared to l1, Tw1, and Tw2.
This suggests that the model should be normalized to avoid
the large difference in magnitude of the variables involved.

7. Conclusions

The analysis of the controllability of a heat exchanger
operating under two-phase conditions is performed. The
nonlinear model is linearized and local controllability is
shown around a fixed operating point. The behavior of
the dynamic model is also analyzed under extreme condi-
tions of mass flow rate and external heat transfer coeffi-
cient. The nonlinear model is written in the form of a
control-affine system with drift. The system is shown to
be STLC. Finally, numerical simulations are performed
that show that the linear system describes the dynamic
behavior of the nonlinear model accurately. A LQ control-
ler is developed for the linearized equations and step
changes in the reference evaporating pressure and outlet
enthalpy are applied. The results show that changing the
reference value of the evaporating pressure has a larger
effect on the other states than a change in the reference
value of the outlet enthalpy. Finally, the LQ controller is
used with the nonlinear model to generate a step change
in the length of the two-phase flow region of the heat
exchanger.
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